Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16640, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37313169

RESUMO

Post-traumatic osteoarthritis (PTOA) is one of the leading causes of disability in developed countries and accounts for 12% of all osteoarthritis cases in the United States. After trauma, inflammatory cells (macrophages amongst others) are quickly recruited within the inflamed synovium and infiltrate the joint space, initiating dysregulation of cartilage tissue homeostasis. Current therapeutic strategies are ineffective, and PTOA remains an open clinical challenge. Here, the targeting potential of liposome-based nanoparticles (NPs) is evaluated in a PTOA mouse model, during the acute phase of inflammation, in both sexes. NPs are composed of biomimetic phospholipids or functionalized with macrophage membrane proteins. Intravenous administration of NPs in the acute phase of PTOA and advanced in vivo imaging techniques reveal preferential accumulation of NPs within the injured joint for up to 7 days post injury, in comparison to controls. Finally, imaging mass cytometry uncovers an extraordinary immunomodulatory effect of NPs that are capable of decreasing the amount of immune cells infiltrating the joint and conditioning their phenotype. Thus, biomimetic NPs could be a powerful theranostic tool for PTOA as their accumulation in injury sites allows their identification and they have an intrinsic immunomodulatory effect.

2.
Cancer Treat Rev ; 109: 102442, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932549

RESUMO

Radiotherapy is a linchpin in head and neck squamous cell carcinoma (HN-SCC) treatment. Modulating tumour and/or normal tissue biology offers opportunities to further develop HN-SCC radiotherapy. The microbiota, which can exhibit homeostatic properties and be a modulator of immunity, has recently received considerable interest from the Oncology community. Microbiota research in head and neck oncology has also flourished. However, available data are difficult to interpret for clinical and radiation oncologists. In this review, we focus on how microbiota research can contribute to the improvement of radiotherapy for HN-SCC, focusing on how current and future research can be translated back to the clinic. We include in-depth discussions about the microbiota, its multiple habitats and relevance to human physiology, mechanistic interactions with HN-SCC, available evidence on microbiota and HNC oncogenesis, efficacy and toxicity of treatment. We discuss clinically-relevant areas such as the role of the microbiota as a predictive and prognostic biomarker, as well as the potential of leveraging the microbiota and its interactions with immunity to improve treatment results. Importantly, we draw parallels with other cancers where research is more mature. We map out future directions of research and explain clinical implications in detail.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Microbiota , Oncologistas , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Resultado do Tratamento
3.
Cell Mol Life Sci ; 79(5): 226, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35391557

RESUMO

BACKGROUND: The impact of the absence of gravity on cancer cells is of great interest, especially today that space is more accessible than ever. Despite advances, few and contradictory data are available mainly due to different setup, experimental design and time point analyzed. METHODS: Exploiting a Random Positioning Machine, we dissected the effects of long-term exposure to simulated microgravity (SMG) on pancreatic cancer cells performing proteomic, lipidomic and transcriptomic analysis at 1, 7 and 9 days. RESULTS: Our results indicated that SMG affects cellular morphology through a time-dependent activation of Actin-based motility via Rho and Cdc42 pathways leading to actin rearrangement, formation of 3D spheroids and enhancement of epithelial-to-mesenchymal transition. Bioinformatic analysis reveals that SMG may activates ERK5/NF-κB/IL-8 axis that triggers the expansion of cancer stem cells with an increased migratory capability. These cells, to remediate energy stress and apoptosis activation, undergo a metabolic reprogramming orchestrated by HIF-1α and PI3K/Akt pathways that upregulate glycolysis and impair ß-oxidation, suggesting a de novo synthesis of triglycerides for the membrane lipid bilayer formation. CONCLUSIONS: SMG revolutionizes tumor cell behavior and metabolism leading to the acquisition of an aggressive and metastatic stem cell-like phenotype. These results dissect the time-dependent cellular alterations induced by SMG and pave the base for altered gravity conditions as new anti-cancer technology.


Assuntos
Neoplasias Pancreáticas , Ausência de Peso , Actinas , Humanos , Lipidômica , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases , Proteômica , Transcriptoma , Simulação de Ausência de Peso/métodos
4.
Nanomaterials (Basel) ; 10(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143238

RESUMO

Efficient communication is essential in all layers of the biological chain. Cells exchange information using a variety of signaling moieties, such as small molecules, proteins, and nucleic acids. Cells carefully package these messages into lipid complexes, collectively named extracellular vesicles (EVs). In this work, we discuss the nature of these cell carriers, categorize them by their origin, explore their role in the homeostasis of healthy tissues, and examine how they regulate the pathophysiology of several diseases. This review will also address the limitations of using EVs for clinical applications and discuss novel methods to engineer nanoparticles to mimic the structure, function, and features of EVs. Using lessons learned from nature and understanding how cells use EVs to communicate across distant sites, we can develop a better understanding of how to tailor the fundamental features of drug delivery carriers to encapsulate various cargos and target specific sites for biomedicine and bioengineering.

5.
Nanomaterials (Basel) ; 10(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233748

RESUMO

Recent studies on coronavirus infectious disease 2019 (COVID-19) pathophysiology indicated the cytokine release syndrome induced by the virus as the main cause of mortality. Patients with severe COVID-19 infection present a systemic hyper inflammation that can lead to lung and multi-organ injuries. Among the most recent treatments, corticosteroids have been identified to be effective in mitigating these catastrophic effects. Our group has recently developed leukocyte-derived nanovesicles, termed leukosomes, able to target in vivo the inflamed vasculature associated with pathological conditions including cancer, cardiovascular diseases, and sepsis. Herein, to gain insights on the anti-inflammatory properties of leukosomes, we investigated their ability to reduce uncontrolled inflammation in a lethal model of lipopolysaccharide (LPS)-induced endotoxemia, recapitulating the cytokine storm syndrome observed in COVID-19 infection after encapsulating dexamethasone. Treated animals showed a significant survival advantage and an improved immune response resolution, as demonstrated by a cytokine array analysis of pro- and anti-inflammatory cytokines, chemokines, and other immune-relevant markers. Our results showed that leukosomes enhance the therapeutic activity of dexamethasone and better control the inflammatory response compared to the free drug. Such an approach could be useful for the development of personalized therapies in the treatment of hyperinflammation related to infectious diseases, including the ones caused by COVID-19.

6.
Sci Rep ; 10(1): 16610, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024130

RESUMO

Cartilage repair in osteoarthritic patients remains a challenge. Identifying resident or donor stem/progenitor cell populations is crucial for augmenting the low intrinsic repair potential of hyaline cartilage. Furthermore, mediating the interaction between these cells and the local immunogenic environment is thought to be critical for long term repair and regeneration. In this study we propose articular cartilage progenitor/stem cells (CPSC) as a valid alternative to bone marrow-derived mesenchymal stem cells (BMMSC) for cartilage repair strategies after trauma. Similar to BMMSC, CPSC isolated from osteoarthritic patients express stem cell markers and have chondrogenic, osteogenic, and adipogenic differentiation ability. In an in vitro 2D setting, CPSC show higher expression of SPP1 and LEP, markers of osteogenic and adipogenic differentiation, respectively. CPSC also display a higher commitment toward chondrogenesis as demonstrated by a higher expression of ACAN. BMMSC and CPSC were cultured in vitro using a previously established collagen-chondroitin sulfate 3D scaffold. The scaffold mimics the cartilage niche, allowing both cell populations to maintain their stem cell features and improve their immunosuppressive potential, demonstrated by the inhibition of activated PBMC proliferation in a co-culture setting. As a result, this study suggests articular cartilage derived-CPSC can be used as a novel tool for cellular and acellular regenerative medicine approaches for osteoarthritis (OA). In addition, the benefit of utilizing a biomimetic acellular scaffold as an advanced 3D culture system to more accurately mimic the physiological environment is demonstrated.


Assuntos
Cartilagem Articular/citologia , Cartilagem Articular/fisiologia , Técnicas de Cultura de Células/métodos , Condrogênese/genética , Condrogênese/imunologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , Células-Tronco/fisiologia , Agrecanas/genética , Agrecanas/metabolismo , Células Cultivadas , Condrogênese/fisiologia , Humanos , Leptina/genética , Leptina/metabolismo , Osteoartrite/genética , Osteoartrite/fisiopatologia , Osteopontina/genética , Osteopontina/metabolismo , Alicerces Teciduais
7.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397392

RESUMO

Even if cancer stem cells (CSCs) represent only a small proportion of the tumor mass, they significantly account for tumor maintenance, resistance to therapies, relapse and metastatic spread, due to their increased capacity of self-renewal, multipotency, tumorigenicity and quiescence. Emerging evidence suggests that the immune contexture within the tumor microenvironment (TME) determines both the response to therapy and the clinical outcome. In this context, CSCs acquire immune evasion skills by editing immune cell functions and sculpting the immunosuppressive landscape of TME. Reciprocally, infiltrating immune cells influence CSCs self-renewal, tumorigenicity and metastasis. In this review, we summarize the immunomodulatory properties of CSCs, as well as the impact of innate immune cells on cancer cells stemness in the different phases of cancer immunoediting process and neoplastic progression.


Assuntos
Imunidade Inata , Neoplasias/imunologia , Células-Tronco Neoplásicas/citologia , Animais , Autorrenovação Celular , Transformação Celular Neoplásica/imunologia , Citocinas/fisiologia , Antígenos HLA/imunologia , Humanos , Imunoterapia , Células Matadoras Naturais/imunologia , Ativação de Macrófagos , Modelos Imunológicos , Monitorização Imunológica , Metástase Neoplásica , Neoplasias/patologia , Células-Tronco Neoplásicas/imunologia , Neutrófilos/imunologia , Ratos , Subpopulações de Linfócitos T/imunologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
8.
J Clin Med ; 9(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013179

RESUMO

The classical cancer stem cell (CSC) model places CSCs at the apex of a hierarchical scale, suggesting different genetic alterations in non-CSCs compared to CSCs, since an ill-defined number of cell generations and time intervals separate CSCs from the more differentiated cancer cells that form the bulk of the tumor. Another model, however, poses that CSCs should be considered a functional state of tumor cells, hence sharing the same genetic alterations. Here, we review the existing literature on the genetic landscape of CSCs in various tumor types and as a case study investigate the genomic complexity of DNA obtained from matched CSCs and non-CSCs from five ovarian cancer patients, using a genome-wide single-nucleotide polymorphism (SNP) microarray.

10.
Sci Rep ; 10(1): 172, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932600

RESUMO

Despite recent advances in drug delivery, the targeted treatment of unhealthy cells or tissues continues to remain a priority. In cancer (much like other pathologies), delivery vectors are designed to exploit physical and biological features of unhealthy tissues that are not always homogenous across the disease. In some cases, shifting the target from unhealthy tissues to the whole organ can represent an advantage. Specifically, the natural organ-specific retention of nanotherapeutics following intravenous administration as seen in the lung, liver, and spleen can be strategically exploited to enhance drug delivery. Herein, we outline the development of a cell-based delivery system using macrophages as a delivery vehicle. When loaded with a chemotherapeutic payload (i.e., doxorubicin), these cellular vectors (CELVEC) were shown to provide continued release within the lung. This study provides proof-of-concept evidence of an alternative class of biomimetic delivery vectors that capitalize on cell size to provide therapeutic advantages for pulmonary treatments.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Biomimética , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Macrófagos/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Lipossomos , Pulmão/citologia , Masculino , Camundongos , Camundongos Nus , Distribuição Tecidual
11.
Front Oncol ; 9: 1211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799185

RESUMO

Casein kinase 1 delta (CK1δ) has a tumor-promoting role in different cancers and it is genetically amplified in a portion of human epithelial ovarian cancer (EOC). CK1δ is involved in pleiotropic cellular functions such as cell proliferation, DNA damage, and migration. We specifically knocked down CK1δ by short hairpin RNA (shRNA) in human ovarian cancer cells and we performed proliferation, chemosensitivity, as well as in vitro and in vivo migration assays. CK1δ knocked-down cells displayed reduced proliferation capability both in vitro and in vivo. Nonetheless, these cells were sensitized to the first line chemotherapeutic agent carboplatin (CPT), and this observation could be associated to reduced expression levels of p21(Cip1/Waf1), involved in DNA damage response, and the anti-apoptotic X-linked inhibitor of apoptosis protein (XIAP). Moreover, CK1δ knocked-down cells were affected in their migratory and lung homing capability, even if in opposite ways, i.e., IGROV1, SKOV3 and MES-OV lost, while OVCAR3 gained motility potential. The results suggest CK1δ as a potential exploitable target for pharmacological EOC treatment, but they also advise further investigation of its role in cell migration.

12.
Inflamm Bowel Dis ; 25(12): 1871-1880, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31560054

RESUMO

Due to the lack of cure for inflammatory bowel disease (IBD) and failure of current medical therapies in many patients with IBD, a need exists in finding novel ways to treat inflammation with a high benefit and the lowest risk possible. With current medical therapies, adverse events or risks of cancer/lymphoma and infections prevent patients-and sometimes providers-in using effective therapies for treatment. Some patients develop systemic side effects that preclude them from continuing a therapy that may have been efficacious, or in other cases, current medical therapies are not adequate to control disease. Nanotechnology is an emerging field where particles, in the size of nanometers, can be used to deliver medications directly to the area of inflammation thus avoiding drug-associated systemic side effects. When using nanoparticles (NPs), only a small amount of the drug is needed, and it can be delivered directly to the inflamed site without exposure to the rest of the body. Here we review conventional and unconventional therapies applied in the treatment of IBD underlying how the introduction of NPs has improved their safety and efficacy.


Assuntos
Doenças Inflamatórias Intestinais/terapia , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas
13.
BMC Cancer ; 19(1): 821, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429725

RESUMO

BACKGROUND: miR-182-5p (miR-182) is an oncogenic microRNA (miRNA) found in different tumor types and one of the most up-regulated miRNA in colorectal cancer (CRC). Although this microRNA is expressed in the early steps of tumor development, its role in driving tumorigenesis is unclear. METHODS: The effects of miR-182 silencing on transcriptomic profile were investigated using two CRC cell lines characterized by different in vivo biological behavior, the MICOL-14h-tert cell line (dormant upon transfer into immunodeficient hosts) and its tumorigenic variant, MICOL-14tum. Apoptosis was studied by annexin/PI staining and cleaved Caspase-3/PARP analysis. The effect of miR-182 silencing on the tumorigenic potential was addressed in a xenogeneic model of MICOL-14tum transplant. RESULTS: Endogenous miR-182 expression was higher in MICOL-14tum than in MICOL-14h-tert cells. Interestingly, miR-182 silencing had a strong impact on gene expression profile, and the positive regulation of apoptotic process was one of the most affected pathways. Accordingly, annexin/PI staining and caspase-3/PARP activation demonstrated that miR-182 treatment significantly increased apoptosis, with a prominent effect in MICOL-14tum cells. Moreover, a significant modulation of the cell cycle profile was exerted by anti-miR-182 treatment only in MICOL-14tum cells, where a significant increase in the fraction of cells in G0/G1 phases was observed. Accordingly, a significant growth reduction and a less aggressive histological aspect were observed in tumor masses generated by in vivo transfer of anti-miR-182-treated MICOL-14tum cells into immunodeficient hosts. CONCLUSIONS: Altogether, these data indicate that increased miR-182 expression may promote cell proliferation, suppress the apoptotic pathway and ultimately confer aggressive traits on CRC cells.


Assuntos
Apoptose/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Inativação Gênica , MicroRNAs/genética , Animais , Células CACO-2 , Ciclo Celular/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Células HT29 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transfecção , Carga Tumoral/genética , Regulação para Cima/genética
14.
Nanoscale ; 11(28): 13576-13586, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31290914

RESUMO

Despite numerous advances in medical treatment, sepsis remains one of the leading causes of death worldwide. Sepsis is characterized by the involvement of all organs and tissues as a consequence of blood poisoning, resulting in organ failure and eventually death. Effective treatment remains an unmet need and novel approaches are urgently needed. The growing evidence of clinical and biological heterogeneity of sepsis suggests precision medicine as a possible key for achieving therapeutic breakthroughs. In this scenario, biomimetic nanomedicine represents a promising avenue for the treatment of inflammatory diseases, including sepsis. We investigated the role of macrophage-derived biomimetic nanoparticles, namely leukosomes, in a lipopolysaccharide-induced murine model of sepsis. We observed that treatment with leukosomes was associated with significantly prolonged survival. In vitro studies elucidated the potential mechanism of action of these biomimetic vesicles. The direct treatment of endothelial cells (ECs) with leukosomes did not alter the gene expression profile of EC-associated cell adhesion molecules. In contrast, the interaction of leukosomes with macrophages induced a decrease of pro-inflammatory genes (IL-6, IL-1b, and TNF-α), an increase of anti-inflammatory ones (IL-10 and TGF-ß), and indirectly an anti-inflammatory response on ECs. Taken together, these results showed the ability of leukosomes to regulate the inflammatory response in target cells, acting as a bioactive nanotherapeutic.


Assuntos
Anti-Inflamatórios , Materiais Biomiméticos , Células Endoteliais , Vesículas Extracelulares , Macrófagos , Nanopartículas/química , Sepse , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Vesículas Extracelulares/química , Vesículas Extracelulares/transplante , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Monocinas/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/patologia
15.
Cell Death Dis ; 10(6): 412, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138788

RESUMO

Receptors tyrosine kinase (RTK) enable normal and tumor cells to perceive and adapt to stimuli present in the microenvironment. These stimuli, also known as growth factors, are important molecular cues actively supporting cancer stem cell (CSC) self-renewal and viability. Since in epithelial ovarian cancer (EOC) the expression of c-Kit (CD117) has been identified as a CSC hallmark, we investigated the existence of a tumor growth-promoting loop between c-Kit and its ligand Stem Cell Factor (SCF). SCF exists as a soluble or transmembrane protein and through c-Kit interaction regulates cell viability, proliferation, and differentiation both in physiological and pathological conditions. High amounts of SCF were found in the ascitic effusions collected from EOC patients. While tumor cells and CSC only expressed the membrane-associated SCF isoform, both secreted and membrane-bound isoforms were expressed by tumor-associated macrophages (TAM, here shown to be M2-like) and fibroblasts (TAF). Circulating monocytes from EOC-bearing patients and healthy donors did not express both SCF isoforms. However, monocytes isolated from healthy donors produced SCF upon in vitro differentiation into macrophages, irrespectively of M1 or M2 polarization. In vitro, both SCF isoforms were able to activate the Akt pathway in c-Kit+ cells, and this effect was counteracted by the tyrosine kinase inhibitor imatinib. In addition, our results indicated that SCF could help c-Kit+ CSC survival in selective culture conditions and promote their canonical stemness properties, thus indicating the possible existence of a juxtacrine/paracrine circuit in EOC.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/metabolismo , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Fibroblastos/metabolismo , Células HEK293 , Humanos , Mesilato de Imatinib/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/genética , Comunicação Parácrina/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Isoformas de Proteínas/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/química , Transdução de Sinais/genética , Fator de Células-Tronco/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
16.
Clin Transl Med ; 8(1): 8, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877412

RESUMO

Nanoparticles have seen considerable popularity as effective tools for drug delivery. However, non-specific targeting continues to remain a challenge. Recently, biomimetic nanoparticles have emerged as an innovative solution that exploits biologically-derived components to improve therapeutic potential. Specifically, cell membrane proteins extracted from various cells (i.e., leukocytes, erythrocytes, platelets, mesenchymal stem cells, cancer) have shown considerable promise in bestowing nanoparticles with increased circulation and targeting efficacy. Traditional nanoparticles can be detected and removed by the immune system which significantly hinders their clinical success. Biomimicry has been proposed as a promising approach to overcome these limitations. In this review, we highlight the current trends in biomimetic nanoparticles and describe how they are being used to increase their chemotherapeutic effect in cancer treatment.

17.
Curr Med Chem ; 26(33): 6132-6148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30182846

RESUMO

Cancer treatment still represents a formidable challenge, despite substantial advancements in available therapies being made over the past decade. One major issue is poor therapeutic efficacy due to lack of specificity and low bioavailability. The progress of nanotechnology and the development of a variety of nanoplatforms have had a significant impact in improving the therapeutic outcome of chemotherapeutics. Nanoparticles can overcome various biological barriers and localize at tumor site, while simultaneously protecting a therapeutic cargo and increasing its circulation time. Despite this, due to their synthetic origin, nanoparticles are often detected by the immune system and preferentially sequestered by filtering organs. Exosomes have recently been investigated as suitable substitutes for the shortcomings of nanoparticles due to their biological compatibility and particularly small size (i.e., 30-150 nm). In addition, exosomes have been found to play important roles in cell communication, acting as natural carriers of biological cargoes throughout the body. This review aims to highlight the use of exosomes as drug delivery vehicles for cancer and showcases the various attempts used to exploit exosomes with a focus on the delivery of chemotherapeutics and nucleic acids.


Assuntos
Portadores de Fármacos/química , Exossomos/química , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Exossomos/metabolismo , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
18.
Cell Death Dis ; 8(7): e2943, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726781

RESUMO

Epithelial ovarian cancer (EOC) is one of the most malignant gynecological tumors with a high mortality rate owing to tumor relapse after anticancer therapies. It is widely accepted that a rare tumor cell population, known as cancer stem cells (CSC), is responsible for tumor progression and relapse; intriguingly, these cells are able to survive nutrient starvation (such as in vitro culture in the absence of glucose) and chemotherapy treatment. Recent data also indicated that chemotherapy resistance is associated with autophagy activation. We thus decided to investigate both in vitro and in vivo the autophagic activity and the effects of the perturbation of this pathway in CSC isolated from EOC ascitic effusions. Ovarian CSC, identified according to their CD44/CD117 co-expression, presented a higher basal autophagy compared with the non-stem counterpart. Inhibition of this pathway, by in vitro chloroquine treatment or CRISPR/Cas9 ATG5 knockout, impaired canonical CSC properties, such as viability, the ability to form spheroidal structures in vitro, and in vivo tumorigenic potential. In addition, autophagy inhibition showed a synergistic effect with carboplatin administration on both in vitro CSC properties and in vivo tumorigenic activity. On the whole, these results indicate that the autophagy process has a key role in CSC maintenance; inhibition of this pathway in combination with other chemotherapeutic approaches could represent a novel effective strategy to overcome drug resistance and tumor recurrence.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Adulto , Proteína 5 Relacionada à Autofagia/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
19.
Cancer Immunol Immunother ; 66(8): 1025-1036, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28401258

RESUMO

Due to their ability to differentiate into various cell types and to support tissue regeneration, stem cells simultaneously became the holy grail of regenerative medicine and the evil obstacle in cancer therapy. Several studies have investigated niche-related conditions that favor stemness properties and increasingly emphasized their association with an inflammatory environment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are major orchestrators of cancer-related inflammation, able to dynamically express different polarized inflammatory programs that promote tumor outgrowth, including tumor angiogenesis, immunosuppression, tissue remodeling and metastasis formation. In addition, these myeloid populations support cancer cell stemness, favoring tumor maintenance and progression, as well as resistance to anticancer treatments. Here, we discuss inflammatory circuits and molecules expressed by TAMs and MDSCs as guiding forces of cancer cell stemness.


Assuntos
Imunoterapia/métodos , Inflamação/imunologia , Macrófagos/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Células-Tronco Neoplásicas/fisiologia , Animais , Carcinogênese , Regulação Neoplásica da Expressão Gênica , Humanos , Tolerância Imunológica , Inflamação/terapia , Neoplasias/terapia , Microambiente Tumoral
20.
Mol Cancer Res ; 15(6): 683-695, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28202504

RESUMO

Circulating microvesicles have been described as important players in cell-to-cell communication carrying biological information under normal or pathologic condition. Microvesicles released by cancer cells may incorporate diverse biomolecules (e.g., active lipids, proteins, and RNA), which can be delivered and internalized by recipient cells, potentially altering the gene expression of recipient cells and eventually impacting disease progression. Leukemia in vitro model systems were used to investigate microvesicles as vehicles of protein-coding messages. Several leukemic cells (K562, LAMA-87, TOM-1, REH, and SHI-1), each carrying a specific chromosomal translocation, were analyzed. In the leukemic cells, these chromosomal translocations are transcribed into oncogenic fusion transcripts and the transfer of these transcripts was monitored from leukemic cells to microvesicles for each of the cell lines. Microarray gene expression profiling was performed to compare transcriptomes of K562-derived microvesicles and parental K562 cells. The data show that oncogenic BCR-ABL1 transcripts and mRNAs related to basic functions of leukemic cells were included in microvesicles. Further analysis of microvesicles cargo revealed a remarkable enrichment of transcripts related to cell membrane activity, cell surface receptors, and extracellular communication when compared with parental K562 cells. Finally, coculturing of healthy mesenchymal stem cells (MSC) with K562-derived microvesicles displayed the transfer of the oncogenic message, and confirmed the increase of target cell proliferation as a function of microvesicle dosage.Implications: This study provides novel insight into tumor-derived microvesicles as carriers of oncogenic protein-coding messages that can potentially jeopardize cell-directed therapy, and spread to other compartments of the body. Mol Cancer Res; 15(6); 683-95. ©2017 AACR.


Assuntos
Vesículas Extracelulares/genética , Perfilação da Expressão Gênica/métodos , Leucemia/genética , Biomarcadores Tumorais/genética , Carcinogênese/genética , Proliferação de Células/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Fusão bcr-abl/genética , Humanos , Células K562 , Leucemia/patologia , Células-Tronco Mesenquimais/fisiologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , RNA Mensageiro , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...